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Apt. Correus 22085, E-46071 València, Spain

Abstract: Employing results from a recent determination of the scalar Kπ form factor

FKπ
0 within a coupled channel dispersion relation analysis [1], in this work we calculate

the slope and curvature of FKπ
0 (t) at zero momentum transfer. Knowledge of the slope

and curvature of the scalar Kπ form factor, together with a recently calculated expression

for FKπ
0 (t) in chiral perturbation theory at order p6, enable to estimate the O(p6) chiral

constants Cr
12 = (0.3 ± 5.4) · 10−7 and (Cr

12 + Cr
34) = (3.2 ± 1.5) · 10−6. Our findings

also allow to estimate the contribution coming from the Ci to the vector form factor

FKπ
+ (0) which is crucial for a precise determination of |Vus| from Kl3 decays. Our result

FKπ
+ (0)|Cri = − 0.018±0.009 is in perfect agreement with a previous estimate by Leutwyler

and Roos already made twenty years ago.
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1 Introduction

Chiral Perturbation Theory (χPT) [2–6] provides a very powerful framework to study the

low-energy dynamics of the lightest pseudoscalar octet. After having been developed to

order p4 in the energy expansion in the fundamental papers by Gasser and Leutwyler [3,4],

the increasing demand for higher precision in the low-energy description of QCD suggested

to extend this expansion to the next order p6 [7–9].

However, the predictive power of χPT decreases when one tries to increase the accu-

racy, because the chiral symmetry constraints are less powerful at higher orders. While

the number of allowed operators is 10 at order p4, parameterised by the chiral constants

Lri , it already grows to 90 at the next order p6. Nevertheless, the situation is not as

hopeless as it might seem, since to a given physical observable, only a few of the chiral

couplings contribute, thus in certain cases allowing to determine all appearing couplings

from phenomenology.

One such set of observables are the strangeness-changing form factors which parametrise

the weak Kπ transition amplitude. The vector form factor FKπ
+ (t) plays a crucial role in

the description of Kl3 decays, whereas the scalar form factor FKπ
0 (t) corresponds to the

S-wave projection of the Kπ transition matrix element. At order p4, both form factors

were already calculated almost twenty years ago by Gasser and Leutwyler [10].

The value FKπ
+ (0) is an indispensable ingredient in the determination of the quark-

mixing matrix element |Vus| from Kl3 decays, and therefore good knowledge of this quantity

is required in order to determine |Vus| with high precision. Very recently, the calculation of

FKπ
+ and FKπ

0 has thus been extended to the next order p6 [11,12], and it was demonstrated

that at this order only two new chiral couplings, Cr
12 and Cr

34, contribute to FKπ
+ (0). In

addition, it was shown that precisely the same couplings also appear in the slope and

curvature of the scalar form factor FKπ
0 (t). This would enable to determine the two needed

couplings if FKπ
0 (t) was known well enough.

Actually, also recently in a different context, the scalar form factor FKπ
0 (t) has been

determined for the first time from a dispersive coupled-channel analysis of the Kπ system

[1]. As an input in the dispersion integrals, S-wave Kπ scattering amplitudes were used

which had been extracted from fits to the Kπ scattering data in the framework of unitarised

χPT with explicit inclusion of resonance fields [13]. The initial motivation to calculate FKπ
0

was the fact that it determines the strangeness-changing scalar spectral function, which

was then employed to calculate the mass of the strange quark from a QCD sum rule

analysis [14].

Thus we are now in a position to employ the results of ref. [1] for an estimation of the
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chiral couplings Cr
12 and Cr

34. In section 2, we briefly review the required expressions for

the vector and scalar Kπ form factors and in section 3, based on our previous work [1], we

then calculate the slope and the curvature of the scalar form factor F0(t). Furthermore,

our results for the slope and curvature of F0(t) are employed to present an estimate of the

contributions to the vector form factor at zero momentum transfer F+(0), resulting from

the order p6 chiral constants, and in section 4, we end with some concluding remarks.

2 Kπ form factors

In the Standard Model, the decay of K mesons into a pion and a lepton pair (Kl3 decay)

is mediated by the strangeness changing vector current s̄γµu. The corresponding hadronic

matrix element, which parametrises the decay K0 → π−l+νl has the general form

〈π−(p′)|s̄γµu|K0(p)〉 = (p+ p′)µ F
Kπ
+ (t) + (p− p′)µ FKπ

− (t) , (2.1)

where t = (p − p′)2. In the following, we shall work in the isospin limit, and thus the

matrix element in eq. (2.1) is equal to the corresponding one which describes the decay

K+ → π0l+νl, up to a global normalisation factor.1 Therefore, different charge states for

kaon and pion will not be distinguished, and to further simplify the notation, below we

shall also drop the superscript on the form factors and set F±(t) ≡ FKπ
± (t).

The form factor F+(t) is also referred to as the vector form factor, because it specifies the

P-wave projection of the crossed-channel matrix element 〈0|s̄γµu|Kπ〉. The corresponding

S-wave projection is described by the scalar form factor

F0(t) ≡ F+(t) +
t

(M2
K −M2

π)
F−(t) . (2.2)

At order p4, both the vector as well as the scalar form factor were calculated by Gasser

and Leutwyler in [10]. The corresponding expressions can be found in the original paper,

and will not be repeated here.

At the next order p6, both form factors were calculated very recently in refs. [11, 12].

However, the two calculations used different forms of the order p6 chiral Lagrangian, and

therefore it is difficult to compare the results. A comparison was attempted in ref. [12], and

differences in some parts of the results were found, but at present no definite conclusions

are reached. Awaiting a clarification of these issues, we decided to employ the more recent

1Isospin breaking corrections resulting from both order e2 as well as (mu − md) terms have been

calculated in [15], and need to be included for a complete phenomenological analysis of Kl3 decays.
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analysis [12], which is based on the formulation of the order p6 chiral Lagrangian presented

in [8].

The value of the vector form factor at t = 0, F+(0), plays a crucial role in the de-

termination of the Cabibbo-Kobayashi-Maskawa (CKM) or quark mixing matrix element

Vus from Kl3 decays [16]. Thus, for a high precision determination of Vus from Kl3 it

is mandatory to know the value of F+(0) as accurately as possible, since already at the

moment the experimental and theoretical uncertainties to Vus are of the same magnitude.

With the upcoming new information on Kl3 from KLOE [17] and NA48 [18], actually the

uncertainty on F+(0) will become the limiting factor in the Vus determination.

The χPT result at order p6 for F+(0) presented in [12] was found to take the following

form:

F+(0) = 1 + ∆(0)− 8

F 4
π

(Cr
12 + Cr

34)∆2
Kπ , (2.3)

where ∆Kπ ≡M2
K −M2

π , and ∆(0) is the correction which arises from order p4 and p6, but

is independent of the order p6 chiral constants Cr
i . The order p4 chiral constants Lri only

appear at O(p6), and a numerical value, based on recent fit results for the Lri , was given

in [12]:

∆(0) = − 0.0080± 0.0057 [loops]± 0.0028 [Lri ] . (2.4)

This demonstrates, that the value of F+(0) only depends on the particular combination of

the two O(p6) chiral constants (Cr
12 + Cr

34).

The expression for the scalar form factor F0(t) at order p6 in χPT, on the other hand,

reads:

F0(t) = F+(0) + ∆(t) +
(FK/Fπ − 1)

∆Kπ
t +

8

F 4
π

(2Cr
12 + Cr

34) ΣKπt−
8

F 4
π

Cr
12 t

2 . (2.5)

Here, ΣKπ ≡M2
K +M2

π , and ∆(t) is a function which receives contributions from order p4

and p6, but like ∆(0) it is independent of the Cr
i , and the order p4 chiral constants Lri only

appear at order p6. Again, a fit to K0
e3 and K+

e3 decay data was presented in ref. [12]. A

good fit over the entire phase space 0 ≤ t ≤ 0.13 (t in GeV2) is given by

∆(t) = ∆1 t+ ∆2 t
2 + ∆3 t

3 +O(t4) = − 0.259(9) t+ 0.840(31) t2 + 1.291(170) t3 . (2.6)

Our errors on the expansion coefficients ∆i have been estimated from the fit differences

to the two Ke3 channels, and from the uncertainty due to different sets of Lri , which at

t = 0.13 GeV2 was found to be around 0.0013 [12].

As should be obvious from eq. (2.5), the relation F0(0) = F+(0), which immediately

follows from the definition (2.2), is satisfied. In addition, up to order p6, also the full
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scalar form factor F0(t) only depends on the two O(p6) chiral couplings Cr
12 and Cr

34, with

different dependencies on the couplings at linear and quadratic order in t. Thus, if the

t-dependence of the scalar form factor would be known from experiment or theory, the two

couplings Cr
12 and Cr

34 could be determined, enabling us to also predict a value for F+(0).

In the next section, we will show that such an analysis is actually possible employing a

recent determination of the scalar Kπ form factor F0(t) from a dispersive coupled-channel

analysis of the Kπ system [1].

3 Scalar Kπ form factor and F+(0)

The scalar Kπ form factor has been obtained recently in ref. [1] from a coupled-channel

dispersion-relation analysis. The S-wave Kπ scattering amplitudes which are required in

the dispersion relations were available from a description of S-wave Kπ scattering data in

the framework of unitarised χPT with resonances [13]. The dominant uncertainties in the

scalar Kπ form factor are due to two integration constants which emerge while solving the

coupled channel dispersion relations.

The two integration constants can be fixed by demanding values for F0(0) as well as

F0(∆Kπ). Since F0(0) = F+(0), for this input we can invoke the most recent result of [12],

F+(0) = 0.976± 0.010. Of course, the value of F+(0) at order p6 in χPT also depends on

the chiral couplings Cr
12 and Cr

34 which we aim to determine. Therefore, in the end our

determination can be viewed as a consistency check that the resulting value for F+(0) is

compatible with the input used for F0(0) in the calculation of the scalar Kπ form factor [1].

In order to fix the second integration constant, we also require a value for F0(∆Kπ), which,

to a very good approximation, is equal to FK/Fπ [19]:

F0(∆Kπ) =
FK
Fπ

+ ∆CT . (3.1)

The correction ∆CT is of order mu or md and has been estimated to be ∆CT = − 3 · 10−3

within χPT at the next-to-leading order [10].

The description of the scalar Kπ form factor of ref. [1] now allows to calculate the first

and second derivatives of the scalar form factor at zero momentum transfer. The different

fits to the S-wave Kπ scattering data have already been discussed in detail in [1, 13] and

average results for the derivatives are presented in table 1 for three different values of F0(0)

as well as F0(∆Kπ). The variation with respect to the different fits is very minor and has

therefore not been displayed explicitly. The dominant uncertainties stem from the used

ranges for F0(0) and F0(∆Kπ). We also observe that the variation of F0(0) and F0(∆Kπ) in
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F0(0) F0(∆Kπ) F ′0(0) [GeV−2] F ′′0 (0) [GeV−4]

1.21 0.804 1.674

0.966 1.22 0.837 1.745

1.23 0.871 1.815

1.21 0.770 1.603

0.976 1.22 0.804 1.674

1.23 0.837 1.744

1.21 0.737 1.532

0.986 1.22 0.770 1.603

1.23 0.804 1.673

Table 1: Average values F ′0(0) and F ′′0 (0) for the unitarised chiral plus K-matrix fits

(6.10K2–4) and (6.11K2–4) of ref. [1], for three values of F0(0) as well as F0(∆Kπ).

the ranges given above leads to the same uncertainty for both derivatives F ′0(0) and F ′′0 (0).

Adding these two uncertainties in quadrature, we then obtain:

F ′0(0) = 0.804± 0.048 GeV−2 , F ′′0 (0) = 1.67± 0.10 GeV−4 . (3.2)

The same physical content as the derivative F ′0(0) can also be represented in two other

constants, the scalar Kπ squared radius as well as the slope parameter λ0. From our value

for F ′0(0) of eq. (3.2), we then obtain

〈r2
Kπ〉 = 6

F ′0(0)

F0(0)
= (0.192± 0.012) fm2 , λ0 = M2

π

F ′0(0)

F0(0)
= 0.0157± 0.0010 . (3.3)

These results are in perfect agreement to the results by Gasser and Leutwyler obtained in

χPT at O(p4), 〈r2
Kπ〉 = (0.20± 0.05) fm2 and λ0 = 0.017± 0.004, though about a factor of

four more precise. On the other hand, the recent finding by Ynduráin, 〈r2
Kπ〉 = 0.31± 0.06

[20], being 2σ higher, is not supported by our result. In ref. [20], it was argued that the

larger value found there arises due to the presence of the light κ resonance. However, also

in our fits to the S-wave Kπ scattering data [13], a dynamically generated light resonance,

which can be identified with the κ, was found, casting some doubts on the approach of [20]

to parametrise the κ resonance with a Breit-Wigner form [21].

The results for F ′0(0) and F ′′0 (0) of eq. (3.2) can now be employed in order to determine

the couplings Cr
12 as well as (Cr

12 + Cr
34) appearing in the order p6 chiral Lagrangian. We

prefer to calculate the combination (Cr
12 + Cr

34), rather than Cr
34 itself, because precisely
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this combination appears in the O(p6) contribution to F+(0). Comparing eq. (2.5) with

the Taylor expansion for F0(t), one finds the following two relations:

Cr
12 =

[
2∆2 − F ′′0 (0)

]F 4
π

16
, (3.4)

(Cr
12 + Cr

34) =

[
F ′0(0)−∆1 −

(FK/Fπ − 1)

∆Kπ
− 8ΣKπ

F 4
π

Cr
12

]
F 4
π

8ΣKπ
. (3.5)

Inserting the given values for F ′′0 (0) and ∆2 into eq. (3.4), we obtain the following estimate

for Cr
12:

Cr
12 = (0.3± 3.3± 4.3) · 10−7 = (0.3± 5.4) · 10−7 , (3.6)

where the first error corresponds to the variation of F0(0) and the second to the remaining

uncertainties. Separate results for the three different inputs for F0(0) are also given in

table 2 below. The huge uncertainty on Cr
12 results from the fact that there is an almost

complete cancellation between the two terms in eq. (3.4).

Our result of eq. (3.6) for Cr
12 can be directly compared with an estimate given in

ref. [12], based on assuming that the scalar pion form factor is dominated by the lowest

lying scalar resonance:

Cr
12|SMD = − F 4

π

8M4
S

≈ − 1.0 · 10−5 . (3.7)

For this estimate it was assumed that the lowest lying scalar resonance can be identified

with the a0(980). However, recently there appears mounting evidence that the a0(980) is

of dynamical origin and that the lowest preexisting scalar resonance is in fact the a0(1450)

[22–28]. However, even with this larger scalar mass, the estimate for C r
12 would result in

Cr
12|SMD ≈ − 2 · 10−6, thus being about 3σ away from our finding of eq. (3.6). From this

observation, we conclude that the scalar meson dominance approximation does not work

well for the O(p6) chiral constant Cr
12, but in view of the large uncertainties, we are unable

to draw more definite conclusions.

Now, we have all the quantities needed for the determination of (Cr
12 + Cr

34) from

eq. (3.5). For the ratio FK/Fπ, we have employed the value FK/Fπ = 1.22±0.01. Further-

more, our result (3.2) for the derivative F ′0(0) is required as an input. As discussed above,

half of the uncertainty on this value is given by the variation of F0(∆Kπ). This implies

that the values for FK/Fπ and F0(∆Kπ) are strongly correlated and this correlation should

be taken into account for our determination of (Cr
12 + Cr

34). What we have then done to

estimate the uncertainty was to take half the error on F ′0(0) as given in (3.2) to be 100%
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correlated with FK/Fπ, but added the remaining half due to F0(0) fully uncorrelated. With

this treatment of uncertainties, we arrive at the main result of our work:

(Cr
12 + Cr

34) = (3.2± 1.4± 0.6) · 10−6 = (3.2± 1.5) · 10−6 . (3.8)

Again, the first error corresponds to the variation of F0(0) and the second to the remaining

parameters. Separate values for the three inputs for F0(0) are also listed in table 2 below.

As a cross check, our results of eqs. (3.6) and (3.8) can be used to verify if the value

for ∆CT in χPT at O(p6) is compatible with the order p4 result given above. Evaluating

F0(t) of eq. (2.5) at t = ∆Kπ, one finds

F0(∆Kπ)− FK
Fπ

= ∆(0) + ∆(∆Kπ) + 16
M2

π

F 4
π

∆Kπ(2Cr
12 +Cr

34) = − 0.006± 0.007 , (3.9)

which is in reasonable agreement to the value for ∆CT give above. However, one should

emphasise that it is not clear whether the expansion of eq. (2.6) can still be trusted for

∆(∆Kπ).

Our result of eq. (3.8) for (Cr
12 +Cr

34) can readily be translated into an estimate of the

order p6 contribution to F+(0) resulting from the chiral constants Cr
i :

F+(0)|Cri = − 8

F 4
π

(Cr
12 + Cr

34)∆2
Kπ (3.10)

=

[
(FK/Fπ − 1)

∆Kπ
+ ∆1 − F ′0(0) +

(
∆2 − 1

2
F ′′0 (0)

)
ΣKπ

]
∆2
Kπ

ΣKπ
= − 0.018± 0.009 .

This result is in perfect agreement with an estimate of the same contribution already given

in the pioneering work by Leutwyler and Roos [16], F+(0)|Cri = − 0.016±0.008. Inspection

of table 2 shows that in this case the uncertainty is dominated by the variation of F0(0).

The remaining parameters only give a small contribution to the error.

F0(0) Cr
12 [10−7] Cr

12 + Cr
34 [10−6] F+(0)|Cri F+(0)

0.966 − 3.0± 4.3 4.6± 0.6 − 0.026± 0.003 0.966± 0.007

0.976 0.3± 4.3 3.2± 0.6 − 0.018± 0.003 0.974± 0.007

0.986 3.5± 4.3 1.7± 0.6 − 0.009± 0.003 0.983± 0.007

Table 2: Results for the different quantities calculated in this work for three different inputs

for F0(0). The errors correspond to a variation of all other input parameters.
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4 Conclusions

Employing results of a recent determination of the scalar Kπ form factor F0(t) within a

coupled channel dispersion relation approach [1], in this work we were able to calculate the

slope and the curvature of F0(t) at zero momentum transfer. Our corresponding results

have been given in eq. (3.2).

Rather recently, the vector and scalar Kπ form factors have also been calculated in

chiral perturbation theory at order p6 in the chiral expansion [11, 12]. Comparing the

resulting expressions for the slope and curvature of F0(t), together with our findings, we

were in a position to estimate the order p6 chiral constants Cr
12 and (Cr

12 + Cr
34) with the

result:

Cr
12 = (0.3± 5.4) · 10−7 , (Cr

12 + Cr
34) = (3.2± 1.5) · 10−6 , (4.1)

where the large uncertainties in Cr
12 are due to numerical cancellations between the two

terms in the relation (3.4).

The vector form factor at zero momentum transfer F+(0) (2.3) is a crucial ingredient

in the determination of the CKM matrix element |Vus| from Kl3 decays and the O(p6)

contribution resulting from the chiral constants Cr
i happens to be just proportional to the

combination (Cr
12 + Cr

34). Employing our estimate for (Cr
12 + Cr

34), we then obtained

F+(0)|Cri = − 0.018± 0.009 , (4.2)

being in perfect agreement with an estimate of the same contribution already given in the

original work by Leutwyler and Roos [16], F+(0)|Cri = − 0.016± 0.008. Further improve-

ment of the presented analysis would require the measurement of F ′0(0), or equivalently λ0,

to better than 5%. This would then also allow to improve the value of F0(∆Kπ) from our

dispersion relation approach to F0(t), and thereby to aquire independent information on

the value of FK/Fπ. Vice versa, also an improvement of our knowledge on the ratio FK/Fπ

from other sources would help to reduce the uncertainty on F+(0).

Compiling the information presented in reference [12] and this work, we are in a position

to present an updated estimate for F+(0):

F+(0) = 1− 0.0227 [p4] + 0.0113 [p6-loops] + 0.0033 [p6-Lri ]− 0.018 [p6-Cr
i ]

± 0.0057 [loops]± 0.0028 [Lri ]± 0.009 [Cr
i ]

= 0.974± 0.011 , (4.3)

where all errors have been added in quadrature. Let us note that while using the same

input parameters as in [11], the authors of ref. [12] found numerical agreement for the order

p6 loop plus Lri contribution, implying that this piece is reasonably well established.
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In table 2, we have again presented our results for F+(0), for the three values of F0(0)

separately. We observe, that for the value F0(0) = 0.966, complete agreement between

input and output is obtained, which seems to indicate that this value of F0(0) is preferred.

However, in view of the large uncertainties, we are unable to draw further conclusions

from this observation. Furthermore, in the analysis presented above, isospin violation has

been neglected for simplicity. Nevertheless, for a complete phenomenological analysis of

Kl3 decays, it is mandatory to include isospin violating corrections, as they are crucial to

explain the differences between K0
l3 and K+

l3 decays [15, 16]. We intend to return to these

questions in the future.

Nevertheless, already at this level a qualitative discussion of the influence of our results

can be given. In the original work by Leutwyler and Roos [16], the order p6 contribution

corresponding to our result (4.2), was considered to be the total correction at this order.

However, as was also pointed out in ref. [12], adding the two-loop correction as well as

the O(p6) contribution proportional to the Lri , a partial cancellation takes place and the

full O(p6) correction turns out to be much smaller. This in turn implies, that our final

result (4.3) for F+(0) is larger than the corresponding value originally employed in [16],

F+(0) = 0.961 (already including a tiny isospin correction), and the resulting value for

|Vus| from Kl3 decays should be smaller than the present Particle Data Group average [29].

It will be very interesting to see how the upcoming improvements in the determination of

|Vus| from Kl3 decays, both on the theoretical as well as the experimental side will compare

to the determination of |Vus| from hadronic τ decays into strange particles [30, 31], which

with upcoming more precise experimental results on the relevant τ decay rate should also

be extremely promising. This should also shed light on the question of a possible violation

of unitarity in the first row of the CKM matrix.
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A Analytic dependence on F0(0) and F0(∆Kπ)

In this appendix, we derive analytical formulae which explicitly show the dependence of

Cr
12, Cr

12 + Cr
34 and F+(0) on the values of F0(0) and F0(∆Kπ).

In ref. [1], the Kπ and Kη′ scalar form factors were obtained by numerically solving the

so called Muskhelishvili-Omnès problem [32, 33]. According to these references the most

general scalar form factor can be expressed in terms of two linearly independent solutions

{F10(s),F11(s)} and {F20(s),F21(s)}, where the first subscript indicates the independent

solution and the second the channel, 0 for Kπ and 1 for Kη′, so that:

F (s) = α1F1(s) + α2F2(s) , (A.1)

where only the first subscript is indicated, and F (s) is a column vector of the two form

factors F0(s) and F1(s) for Kπ and Kη′ channels, respectively. Generally, α1,2 are polyno-

mials [32] although in our case they are just constants since the canonical solutions Fi(s)
vanish at infinity like 1/s, and we require the resulting scalar form factor F (s) to also

vanish at infinity. The solutions Fi(s) are just an output from the employed T-matrices of

ref. [13], once two normalisation conditions for each Fi(s) are imposed. We choose:

F10(0) = 1 , F20(0) = 0 , F10(∆Kπ) = 0 , F20(∆Kπ) = 1 . (A.2)

With this choice, F (s) in eq. (A.1) can be expressed as follows:

F (s) = F1(0)F1(s) + F1(∆Kπ)F2(s) . (A.3)

Taking into account the previous expression and eqs. (3.4) and (3.5), we then find:

Cr
12 =

F 4
π

16

[
2∆2 − F0(0)F ′′10(0)− F0(∆Kπ)F ′′20(0)

]
, (A.4)

Cr
12 + Cr

34 =
F 4
π

8ΣKπ

[
F0(0)F ′10(0) + F0(∆Kπ)F ′20(0)−∆1 −

(FK/Fπ − 1)

∆Kπ
− 8ΣKπ

F 4
π

Cr
12

]
,

(A.5)

where we have made use of eq. (A.3) to express F ′0(0) and F ′′0 (0) in terms of the constants

F0(0) and F0(∆Kπ). We can substitute the last expression for Cr
12 into eq. (A.5), so that:

Cr
12 + Cr

34 =

[
F0(0)F ′10(0) + F0(∆Kπ)F ′20(0)−∆1 − ΣKπ∆2 −

(FK/Fπ − 1)

∆Kπ

+
ΣKπ

2

(
F0(0)F ′′10(0) + F0(∆Kπ)F ′′20(0)

) ] F 4
π

8ΣKπ
. (A.6)
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This equation, together with eq. (A.4), explicitly shows the dependence of the chiral coun-

terterms Cr
12 and Cr

12 +Cr
34 on the inputs F0(0) and F0(∆Kπ). On the other hand, making

use of eq. (2.3), we can also write:

F+(0) = 1 + ∆(0)−
[
F0(0)

{
F ′10(0) +

ΣKπ

2
F ′′10(0)

}
+ F0(∆Kπ)

{
F ′20(0) +

ΣKπ

2
F ′′20(0)

}

− ∆1 − ΣKπ∆2 −
(FK/Fπ − 1)

∆Kπ

]
∆2
Kπ

ΣKπ

. (A.7)

It is worth stressing that eq. (A.7) is not an identity since is not valid for any value of

F0(0). As discussed in section 3 and 4, imposing consistency between the input and output

values for F0(0) would make it feasible to fix F0(0) without employing the value given in

ref. [12] as an input. In turn this would also allow for a completely independent evaluation

of F0(0)|Cri to that of ref. [16]. Indeed, from eq. (A.7) one explicitly finds:

F+(0) =

[
1 + ∆(0) +

∆2
Kπ

ΣKπ

(
∆1 + ΣKπ∆2 +

FK/Fπ − 1

∆Kπ
− FK
Fπ

[
F ′20(0) + F ′′20(0)

ΣKπ

2

])]

×
[
1 +

∆2
Kπ

ΣKπ

(
F ′10(0) + F ′′10(0)

ΣKπ

2

)]−1

. (A.8)

The values of the derivatives F ′i0(0) and F ′′i0(0) with i = 1, 2 slightly vary over the T-

matrices used in ref. [1].2 Nevertheless, this source of error is negligible compared with the

uncertainties from the rest of inputs that enter on the right hand side of eq. (A.8), already

introduced in section 3. From eq. (A.8) one has:

F0(0) = 0.964± 0.042 . (A.9)

Unfortunately, the large error of ∆(0) in eq. (2.4), due to lack of a precise knowledge of

the Lri coefficients, prevents this method to be competitive since the resulting error bar is

a factor of four larger than the one in refs. [12, 16] and in eq. (4.3). If the error of ∆(0)

could be reduced to about 5%, similarly to the errors of ∆1 and ∆2, the resulting error in

F+(0) would be 0.014.

2For the fit 6.10K3 one has: F ′10(0) = −3.393, F ′′10(0) = −6.877, F ′20(0) = 3.373 and F ′′20(0) = 6.877 ,

in units of GeV−2 and GeV−4 for the first and second derivatives, respectively.
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